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Language and Vision

Language and Vision: Joint understanding of both image/video and text data

Popular Tasks
e Image Captioning
Visual Question Answering
Visual Entailment
Visual Storytelling
Visual Reasoning
Image-Text Retrieval
Vision and Language Navigation
Video Understanding



Image Captioning

Every picture tells a story: Generating sentences from images (ECCV 2010)

Baby talk: Understanding and generating simple image descriptions (CVPR 2011)

Show and Tell: A Neural Image Caption Generator (CVPR 2015)

Show, Attend and Tell: Neural Image Caption Generation with Visual Attention (ICML 2015)
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https://www.cs.cmu.edu/~afarhadi/papers/sentence.pdf
http://www.tamaraberg.com/papers/generation_cvpr11.pdf
https://arxiv.org/abs/1411.4555
https://arxiv.org/pdf/1502.03044.pdf

Attention in Image Captioning

Show, Attend and Tell: Neural Image Caption Generation with Visual Attention

14x14 Feature Map

1. Input 2. Convolutional 3. RNN with attention 4. Word by
Image Feature Extraction over the image word
generation


https://arxiv.org/pdf/1502.03044.pdf

Visual Question Answering

VQA: Visual Question Answering (ICCV 2015)
https://visualga.org/

What color are her eyes? How many slices of pizza are there?
What is the mustache made of? Is this a vegetarian pizza?
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Does it appear to be rinY?

Is this person expecting company?
What is just under the tree? Does this person have 20/20 vision?


https://visualqa.org/

Natural Language for Visual Reasoning

A corpus for reasoning about natural language grounded in photographs ACL 2019
A corpus of natural language for visual reasoning. ACL 2017

The left image contains twice the number of dogs as the
right image, and at least two dogs in total are standing.

One image shows exactly two brown acorns in
back-to-back caps on green foliage.

Figure 1: Two examples from NLVR2. Each caption
is paired with two images.? The task is to predict if
the caption is True or False. The examples require
addressing challenging semantic phenomena, includ-
ing resolving twice ... as to counting and comparison
of objects, and composing cardinality constraints, such
as at least two dogs in total and exactly two.>


https://aclanthology.org/P19-1644/
https://aclanthology.org/P17-2034/

Vision and Language Navigation

Vision-and-Language Navigation

|
(VLN): an embodied agent is placed at

a spot in a photo-realistic environment;

Leave the bedroom, and enter the kitchen. Walk
forward, and take a left at the couch. Stop in
front of the window.

https://datarelease.blob.core.windows.net/tutorial/VQA2VLN2021/VLN_part1.pdf



Vision and Language Navigation

. Vision-and-Language Navigation

' (VLN): an embodied agent is placed at

a spot in a photo-realistic environment;

The agent is called to navigate to a
specific spot based on given natural
language instructions.

Leave the bedroom, and enter the kitchen. Walk
forward, and take a left at the couch. Stop in
front of the window.

https://bringmeaspoon.org



https://bringmeaspoon.org/

Video Understanding

MSR-VTT (Microsoft Research Video to Text) is a large-scale dataset for the open domain
video captioning, which consists of 10,000 video clips from 20 categories, and each video
clip is annotated with 20 English sentences by Amazon Mechanical Turks.

e Video Captioning

e Text-to-Video Retrieval

e Video QA

1. A child is cooking in the kitchen.

2. A girl is putting her finger into a plastic cup
containing an egg.

3. Children boil water and get egg whites ready.

4. People make food in a kitchen.

5. A group of people are making food in a kitchen.

10


https://www.microsoft.com/en-us/research/wp-content/uploads/2016/06/cvpr16.msr-vtt.tmei_-1.pdf

Why Language and Vision

https://datarelease.blob.core.windows.net/tutorial/VQA2VLN2021/VLN_part1.pdf
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Why Language and Vision

An Al system should perform well on both.
"Embodied Al"
@ See: perceive their environment through vision or other senses.
# Talk: hold a natural language dialog grounded in their environment.
v Listen: understand and react to audio input anywhere in a scene.
‘ Act: navigate and interact with their environment to accomplish goals.

) Reason: consider and plan for the long-term consequences of their actions.

Embodied Al is the field for solving Al problems for virtual robots that can move, see,
speak, and interact in the virtual world and with other virtual robots — these simulated

robot solutions are then transferred to real world robots.

--- Luis Bermudez, Overview of Embodied Artificial Intelligence

12
https://datarelease.blob.core.windows.net/tutorial/VQA2VLN2021/VLN_part1.pdf



Convolutional Neural Networks
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Left: A regular 3-layer Neural Network. Right: A ConvNet arranges its neurons in three dimensions (width, height, depth), as
visualized in one of the layers. Every layer of a ConvNet transforms the 3D input volume to a 3D output volume of neuron
activations. In this example, the red input layer holds the image, so its width and height would be the dimensions of the image,
and the depth would be 3 (Red, Green, Blue channels).

In particular, unlike a regular Neural Network, the layers of a ConvNet have neurons arranged in 3
dimensions: width, height, depth (equal to 3).

https://cs231n.github.io/convolutional-networks/ 13



Convolutional Neural Networks
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We use three main types of layers to build ConvNet architectures:
Convolutional Layer, Pooling Layer, and Fully-Connected Layer

https://cs231n.github.io/convolutional-networks/
https://towardsdatascience.com/convolutional-neural-network-in-natural-language-processing-96d67f91275c



https://cs231n.github.io/convolutional-networks/
https://towardsdatascience.com/convolutional-neural-network-in-natural-language-processing-96d67f91275c

Convolutional Neural Networks
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We have two filters of size 3x3, and they are applied with a stride of 2.
Therefore, the output volume size has spatial size (5-3+2)/2+1=3

https://cs231n.github.io/convolutional-networks/
https://towardsdatascience.com/convolutional-neural-network-in-natural-language-processing-96d67f91275c
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https://cs231n.github.io/convolutional-networks/
https://towardsdatascience.com/convolutional-neural-network-in-natural-language-processing-96d67f91275c

Convolutional Neural Networks
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To get output activations (green): summing up, and then offsetting the result by the bias.

https://cs231n.github.io/convolutional-networks/

https://towardsdatascience.com/convolutional-neural-network-in-natural-language-processing-96d67f91275c
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https://cs231n.github.io/convolutional-networks/
https://towardsdatascience.com/convolutional-neural-network-in-natural-language-processing-96d67f91275c

Convolutional Neural Networks

https://cs231n.github.io/convolutional-networks/
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How a typical VQA system works

Image ]

Feature
Extraction J Yy

Multi-Modal Answer Hambureer
Fusion Prediction g

- ~\ 7'y

Question
Encoding

What is she eating?

https://datarelease.blob.core.windows.net/tutorial/VQA2VLN2021/VLP_part1.pdf



MCAN: Deep Modular Co-Attention Network (Yu et al., 2019)

Winner of the VQA Challenge 2019

Q: What is the
mustache > Stacking
made of?

— or —

Encoder-
Decoder

A: Banana

Question and Image Deep Co-Attention Multimodal Fusion and Output
Representation (§4.1) Learning (§4.2) Classifier (§4.3)

Figure 4: Overall flowchart of the deep Modular Co-Attention Networks (MCAN). In the Deep Co-attention Learning stage,
we have two alternative strategies for deep co-attention learning, namely stacking and encoder-decoder.


https://arxiv.org/pdf/1906.10770.pdf

VL Research

Methods before 2019

Bilinear pooling
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https://datarelease.blob.core.windows.net/tutorial/VQA2VLN2021/VLP_part1.pdf
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VL Research

After 2019:
e Large-scale transformer-based self-supervised pre-

training

e Transformer: first proposed for NLP, popularized by
BERT and GPT-2/3, extended to image generation,
vision-language pre-training, and now image
classification

https://datarelease.blob.core.windows.net/tutorial/VQA2VLN2021/VLP_part1.pdf
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Vision-and-Language Pretraining (VLP) models
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VILBERT (Lu et al., 2019)

We generate image region features by extracting bounding boxes and their visual
features from a pre-trained object detection network (see Sec. 3.1).

(vos hon, s )

r : : Em====
<CLS> Man shopping for fruit , <SEP> TRM
" Wy wy W, W3 W, Wr SEES I_::I st ey yy— !

L-k x Kk x
Figure 1: Our VILBERT model consists of two parallel streams for visual (green) and linguistic
(purple) processing that interact through novel co-attentional transformer layers. This structure allows
for variable depths for each modality and enables sparse interaction through co-attention. Dashed
boxes with multiplier subscripts denote repeated blocks of layers.

hWO! hwl; Y hWTJ
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https://arxiv.org/abs/1908.02265

VILBERT (Lu et al., 2019)

We generate image region features by extracting bounding boxes and their visual
features from a pre-trained object detection network (see Sec. 3.1).
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https://arxiv.org/abs/1908.02265

VILBERT (Lu et al., 2019)

We generate image region features by extracting bounding boxes and their visual
features from a pre-trained object detection network (see Sec. 3.1).
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Vision Language BERT Vision & Language BERT
dﬂ@ - | <vsic | |<cLs> [ [amsio || <msio || for | eee |<sEP>| |<IMG> <CLS> @ shopping @ ksi»/
(a) Masked multi-modal learning (b) Multi-modal alignment prediction

Figure 3: We train ViLBERT on the Conceptual Captions [24] dataset under two training tasks to
learn visual grounding. In masked multi-modal learning, the model must reconstruct image region

categories or words for masked inputs given the observed inputs. In multi-modal alignment prediction,

the model must predict whether or not the caption describes the image content.
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https://arxiv.org/abs/1908.02265

VisualBERT (Li et al., 2019)

Objective 2 Objective 1
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< < < “ {} “
— = .
A person hits a ball with a tennis racket [CLS] a [MASK] [SEP] t - - K]

Figure 2: The architecture of VisualBERT. Image regions and language are combined with a Trans-
former to allow the self-attention to discover implicit alignments between language and vision. It
is pre-trained with a masked language modeling (Objective 1), and sentence-image prediction task
(Objective 2), on caption data and then fine-tuned for different tasks. See §3.3 for more details.
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https://arxiv.org/abs/1908.03557

VIT (Vision Transformer) (Dosovitskiy et al., 2020)

An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
"We show that this reliance on CNNs is not necessary and a pure transformer applied directly
to sequences of image patches can perform very well on image classification tasks."
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https://arxiv.org/abs/2010.11929

BEIT: BERT Pre-Training of Image Transformers (Bao et al., 2021)

Pretrained Vision Transformer
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Figure 1: Overview of BEIT pre-training. Before pre-training, we learn an “image tokenizer” via
autoencoding-style reconstruction, where an image is tokenized into discrete visual tokens according
to the learned vocabulary. During pre-training, each image has two views, i.e., image patches, and
visual tokens. We randomly mask some proportion of image patches (gray patches in the figure) and
replace them with a special mask embedding [M]. Then the patches are fed to a backbone vision
Transformer. The pre-training task aims at predicting the visual tokens of the original image based
on the encoding vectors of the corrupted image.
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https://arxiv.org/abs/2106.08254

Masked Autoencoders Are Scalable Vision Learners (He et al., 2021)

) o
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O
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B | |
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Figure 1. Our MAE architecture. During pre-training, a large
random subset of image patches (e.g., 75%) is masked out. The
encoder is applied to the small subset of visible patches. Mask
tokens are introduced after the encoder, and the full set of en-
coded patches and mask tokens is processed by a small decoder
that reconstructs the original image in pixels. After pre-training,
the decoder is discarded and the encoder is applied to uncorrupted
images (full sets of patches) for recognition tasks.
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https://arxiv.org/abs/2111.06377

CLIP: Contrastive language-image pretraining

CLIP pre-trains an image encoder and a text encoder to predict which images were paired with which texts in our dataset. We
then use this behavior to turn CLIP into a zero-shot classifier. We convert all of a dataset’s classes into captions such as “a photo
of a dog” and predict the class of the caption CLIP estimates best pairs with a given image.

1. Contrastive pre-training
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https://openai.com/blog/clip/
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CLIP: Contrastive language-image pretraining

Although both models have the same accuracy on the
ImageNet test set, CLIP’s performance is much more
representative of how it will fare on datasets that
measure accuracy in different, non-lmageNet
settings.

For instance, ObjectNet checks a model’s ability to
recognize objects in many different poses and with many
different backgrounds inside homes while ImageNet
Rendition and ImageNet Sketch check a model’s ability to
recognize more abstract depictions of objects.

https://openai.com/blog/clip/
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CLIP: Contrastive language-image pretraining

Although both models have the same accuracy on the
ImageNet test set, CLIP’s performance is much more
representative of how it will fare on datasets that
measure accuracy in different, non-lmageNet
settings.

For instance, ObjectNet checks a model’s ability to
recognize objects in many different poses and with many
different backgrounds inside homes while ImageNet
Rendition and ImageNet Sketch check a model’s ability
to recognize more abstract depictions of objects.

https://openai.com/blog/clip/
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CLIP for zero-shot learning

CLIP pre-trains an image encoder and a text encoder to predict which images were paired with which texts in our dataset. We
then use this behavior to turn CLIP into a zero-shot classifier. We convert all of a dataset’s classes into captions such as “a photo

of a dog” and predict the class of the caption CLIP estimates best pairs with a given image.

2. Create dataset classifier from label text

a photo of . Text
a{object}. Encoder ) )

3. Use for zero-shot prediction

Image
Encoder - I Ln LT, IpTs LTy

a photo of
adog.

https://openai.com/blog/clip/
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DALL-E: Creating Images from Text

DALL-E is a 12-billion parameter version of GPT-3 trained to generate images from text
descriptions, using a dataset of text-image pairs.

TEXT PROMPT  an armchair in the shape of an avocado. . ..

AL K

Edit prompt or view more images+

AI-GENERATED
IMAGES

https://openai.com/blog/dall-e/
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(Some) Limitations of DALL-E

https://twitter.com/benjamin hilton/status/1520032772072607747

Sometimes it makes up letter-like things that aren’t real letters.

ARNKING ERETING
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https://twitter.com/benjamin_hilton/status/1520032772072607747

(Some) Limitations of DALL-E

https://twitter.com/benjamin_hilton/status/1520032772072607747
Two dogs dressed like roman soldiers on a pirate ship looking at New York City through a

spyglass
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https://twitter.com/benjamin_hilton/status/1520032772072607747

(Some) Limitations of DALL-E

https://twitter.com/benjamin_hilton/status/1520032772072607747
Two dogs dressed like roman soldiers on a pirate ship looking at New York City through a
spyglass = DALL-E can’t deal with lots of extras or very long descriptions.
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https://twitter.com/benjamin_hilton/status/1520032772072607747

(Some) Limitations of DALL-E

https://twitter.com/benjamin_hilton/status/1520032772072607747
These are for the prompt:"A red cube, on top of a yellow cube, to the left of a green

cube”?
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https://twitter.com/benjamin_hilton/status/1520032772072607747

(Some) Limitations of DALL-E

https://twitter.com/benjamin_hilton/status/1520032772072607747
These are for the prompt:"A red cube, on top of a yellow cube, to the left of a green
cube”? ---->DALL-E isn't great at composition
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https://twitter.com/benjamin_hilton/status/1520032772072607747

Extras
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VideoBERT (Sun et al., 2019)

VideoBERT: A Joint Model for Video and Language Representation Learning
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Figure 3: Illustration of VideoBERT in the context of a video and text masked token prediction, or cloze, task. This task also
allows for training with text-only and video-only data, and VideoBERT can furthermore be trained using a linguistic-visual
alignment classification objective (not shown here, see text for details).
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VideoCLIP

VideoCLIP: Contrastive Pre-training for Zero-shot Video-Text Understanding
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VideoCLIP: Contrastive learning with hard-retrieved negatives and
overlapping positives for video-text pre-training.

Figure 1: VideoCLIP aims for zero-shot video under-
standing via learning fine-grained association between
video and text in a transformer using a contrastive ob-
jective with two key novelties: (1) for positive pairs,
we use video and text clips that are loosely temporarily
overlapping instead of enforcing strict start/end times-
tamp overlap; (2) for negative pairs, we employ a re-
trieval based sampling technique that uses video clus-
ters to form batches with mutually harder videos.
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